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Mixed systems of a series of rare earth metals such as La, Ce, Pr, Nd, Sm, Eu, and Yb and their low-valent
rare earth diiodides exhibit excellent reducing ability toward the reductive deiodation from 1-iododode-
cane as a model compound compared with their single systems. More importantly, under photoirradiation
conditions, the C–I bond reduction using ‘Ln/LnI2’ takes place efficiently in refluxing THF, even in the cases
of heavy rare earths such as Gd, Tb, Dy, Ho, Er, and Tm.

� 2008 Elsevier Ltd. All rights reserved.
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Scheme 1. Preparation of ‘Ln/LnI2’ reagents.
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Scheme 2. Color of the THF solution of ‘Ln/LnI2’.
Lanthanoid elements have electron(s) in f-orbitals, and should
indicate characteristic reactivities on the basis of the nature of f-
electrons.1 However, systematic studies on the reactivities of a ser-
ies of lanthanoid species are still rare. During the course of our
study on the clarification of the characteristic features of rare earth
compounds and their application to synthetic reactions, we have
revealed two novel findings: (i) the combination of samarium(II)
diiodide and samarium metal enhances the reducing ability com-
pared with that of their single systems;2,3 (ii) visible light irradia-
tion dramatically enhances the reducing ability of SmI2.4,5 To
clarify similar enhancement of the reducing ability of other rare
earth species by the combination of divalent and zerovalent spe-
cies or by photoirradiation,6,7 we have investigated systematically
the reduction of 1-iodododecane as a model compound by using
low-valent species of a series of rare earths upon photoirradiation
or in the dark. In this Letter, we wish to report a novel finding that
most of low-valent rare earth species exhibit their potentially excellent
reducing abilities under photoirradiation conditions.

At first, we prepared the mixed-valent rare earths system (‘Ln/
LnI2’) by the reaction of excess amount of rare earth metal and
1,2-diiodoethane in THF (Scheme 1).

A mixture of Ln powder (1.0 mmol) and 1,2-diiodoethane
(0.2 mmol) in THF (2 mL) was stirred at room temperature for
1.5 h under nitrogen atmosphere, and in this stage, the color of
the solution changed as follows (Scheme 2): Sc (yellow), Y (yellow),
La (gray), Ce (ocher), Pr (gray), Nd (gray), Sm (blue), Eu (brown), Gd
(yellow), Tb (yellow), Dy (deep green), Ho (yellow), Er (yellow
green), Tm (yellow), Yb (reddish brown), and Lu (yellow). In the
cases of the Sm, Eu, and Yb, the corresponding divalent diiodides
(LnI2) were apparently formed, according to the literature.8 Similar
ll rights reserved.
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observation concerning other rare earths strongly suggests the
generation of low-valent rare earth species such as LnI2.

Next, we examined the reduction of 1-iodododecane by use of
these binary systems of divalent and zero valent rare earth re-
agents (‘Ln/LnI2’) in the presence of 2-propanol as a proton source
(Scheme 3), and the results are summarized in Figure 1.9 As can be
seen from Figure 1, the reduction took place successfully in the
cases of La, Ce, Pr, Nd, Sm, Eu, and Yb providing n-dodecane as
the major product (shown in the third line in Fig. 1) along with
small amounts of the corresponding coupling product (n-C24H50,
the second line) and disproportionation products (n-
C10H21CH@CH2 (the first line) and n-C12H26).10
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Figure 1. Reduction of 1-iodododecane with ‘Ln/LnI2’ system (r.t., 3 h).
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Figure 3. Influence of photoirradiation on the ‘Ln/LnI2’-induced reduction.
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Scheme 3. Reduction of 1-iodododecane by use of rare earths reagents.
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However, when the same reduction of 1-iodododecane was at-
tempted by using only Ln metals under the identical conditions
(room temperature, 3 h), no reaction took place at all (the first line
in Fig. 2).11–13 Furthermore, when the reduction of 1-iodododecane
was carried out by employing equimolar amounts of Ln metal (1.0
mmol) and ICH2CH2I (1.0 mmol) (which may form ‘LnI2’ reagents),
the desired reduced products were obtained in very low yields (the
second line in Fig. 2): the yields of n-C12H26 were 19% (La); 15%
(Ce); 12% (Pr); 7% (Nd); 8% (Sm); 1% (Yb).14,15 These results
strongly suggest that the binary systems of ‘Ln(0)/Ln(II)’ (the third
line) exhibit higher reducing ability compared with the Ln(0) or
‘LnI2’ single system.

In the case of Sm, we have revealed that SmI2 (a dark blue solu-
tion in THF) was activated by irradiation with the light of wave-
length between 560 and 700 nm. Mixed systems of other rare
earths indicated several colors in THF, and therefore, similar photo-
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Figure 2. Reduction of 1-iodododecane by use of low-valent rare earths reagents
(r.t., 3 h).
induced enhancement of the reducing ability may be observed. To
clarify the photoinduced reducing ability, we examined the same
reduction of 1-iodododecane by using a series of ‘Ln/LnI2’ systems
upon irradiation through Pyrex (>300 nm) with a xenon lamp
(500 W) during the reactions (‘Ln/LnI2/hm’ systems16).

Interestingly, the reduction using the ‘Ln/LnI2/hm’ systems pro-
ceeded very smoothly in the cases of La, Ce, Pr, Nd, Sm, Eu, and
Yb.17 In the cases of Pr and Nd, especially, the photoinduced
enhancement of the reducing ability appeared remarkable [yield
of dodecane; Nd: 33% (dark), 67% (hm), Pr: 41% (dark), 75% (hm)].
Noteworthy is that, in the cases of heavy rare earths such as Gd,
Tb, and Ho, the reduction took place upon photoirradiation condi-
tions [yield of dodecane; 12% (Gd), 23% (Tb), and 7% (Ho)], despite
the same reduction in the dark did not occur at all. Furthermore,
the attempted photoinduced reduction using Y, Dy, and Er suggests
the possibility of the photoactivation.

We compiled these results and compared with the results in the
dark conditions (Fig. 3). Figure 3 clearly indicates that the photoir-
radiation increases the reducing ability of a series of low-valent
rare earths species for the reductive deiodation of 1-iodododecane.

To increase the conversion, we examined the reaction under
refluxing condition of THF (67 �C) for extended reaction time
(20 h) (Fig. 4). The ‘Ln/LnI2’ systems of Y and heavy rare earths as
Gd, Tb, Dy, Ho, Er, and Tm worked well for the reduction of 1-
iodododecane under reflux for 20 h, especially under photoirradia-
tion conditions.

In the cases of Tb and Dy upon photoirradiation, the yields of
dodecane were almost the same as those when the reaction was
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Figure 4. Reduction of 1-iodododecane with heavy rare earth reagents (67 �C, 20 h).
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conducted at 67 �C for 20 h in the dark [yield of dodecane; Tb: 70%
(dark), 74% (hm), Dy: 68% (dark), 75% (hm)]. However, the decrease
in the reaction time (8 h) clearly indicates that the influence of
the photoirradiation was recognized more definitely: the yields
of n-C12H26 were 2% (dark), 33% (hm) [Tb]; 3% (dark), 46% (hm) [Dy].

In summary, we have investigated the generation and reducing
ability of a series of low-valent rare earths systematically. In the
case of light rare earths as La, Ce, Pr, Nd, Sm, Eu, and Yb, it has been
shown that the mixed-valent rare earths (‘Ln/LnI2’) indicate poten-
tially higher reducing ability compared with Ln or LnI2 single sys-
tem. More importantly, it has been revealed that photoirradiation
can induce excellent reducing ability of low-valent rare earths in
the cases of most of rare earths species. As shown in the cases of
SmI2 and YbI2 typically, divalent lanthanoid diiodides have their
absorption in near UV and/or visible region based on the 4f–5d
excitation. Accordingly, it is expected that ‘the photoinduced diva-
lent rare earth species in the excited state’ exhibits higher reducing
ability than ‘the divalent rare earth species in the ground state’.4f,18

We believe that this finding will open up a new field of rare earth
chemistry.
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